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Let Do be the Stokes drag on an axially symmetric body moving parallel to its 
axis with velocity Uo through an unbounded fluid. The drag D experienced by 
the same body oscillating with velocity U = Uo eiaL along its axis in the unbounded 
fluid is given by the expression 

where a is any characteristic particle dimension and 

M 2  = a2apl,u 

is a dimensionless number. The part of this drag formula which gives the energy 
dissipation is calculated for bodies of various shapes. 

1. Introduction 
The problem of slow vibrations of a class of axially symmetric bodies in an 

incompressible viscous fluid has been discussed by the author (1955). With the 
exception of a sphere and a cylinder, the results turn out to be in the form of 
certain series of complicated wave functions which for the lack of necessary 
tables cannot be calculated numerically. Recently certain expansion techniques 
have been developed by Lagerstrom & Cole (1955) and Proudman & Pearson 
(1957) for discussing Stokes and Oseen flows. Their arguments have been used 
and clarified by various other workers in the field. For example, Chang (1960) 
has studied Stokes flow of a conducting fluid past an axially symmetric body. 
We make use of this method for solving our problem for small Reynolds numbers. 
The following discussion is restricted to a less formal summary of those aspects 
of the techniques which are directly relevant to the present problem. For a 
detailed account the reader is referred to the above papers. 

Brenner (1961) and Brenner & Cox (1963) have also used these expansions to 
find the general formula for the Oseen drag. In  their analysis they have shown 
that the drag formula found for an axially symmetric body remains valid even 
for a class of bodies which are not axially symmetric. By arguments similar to 
those given by them and from the analysis of Proudman & Pearson (1957, p. 245) 
it can be shown that the formula presented in this paper remains true for a body 
of an arbitrary shape. 
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2. Equations of motion 
We consider the unsteady flow of an incompressible, viscous fluid when an 

axially symmetric body of finite size is oscillating longitudinally along its axis of 
symmetry. It oscillates with velocity U = ?Joeiut about its centre of inertia as 
the mean position. Such a motion is governed by Navier-Stokes equations: 

v . v = o ,  
- v ~ + I u v ~ v - ~ ( v . v v + ~ v ~ ~ ~ )  = 0, 

where v is the velocity vector, p is the pressure, p is the density and ,u is the 
viscosity. Both p and ,u are constants. 

Let a be any characteristic length. The space co-ordinates may then be made 
non-dimensional with the factor a-l. The time t may be made non-dimensional 
with the help of the circular frequency v. Thus 

r' = r/a,  t' = vt ,  

where r = (x,y,z). The pressure and the velocity may be made dimensionless 
by the transformations 

p' = (a/pUo)p, v' = v/Uo. 13) 

The equations (1) and (3) then reduce (after omitting the primes) to 

and - 

v . v  = 0,  

v p  + V ~ V  - RV . vv - MyaV/at) = 0, 

where R = Uoap/,u is the Reynolds number and M2 = a20pl,u is another dimen- 
sionless number. We assume that av and Uo are of the same order of magnitude. 
Thus, by suitable choice of a, we can make M2 = R and (5) then becomes 

- v p  + V ~ V  - M ~ V .  vv + (avpt))  = 0. ( 6 )  

Note that the boundary conditions (non-dimensional) are 

and 
v = 0, at infinity, 
v = Ieit,  at the body, (7) 

where I is the unit vector along the direction of the oscillations, i.e. the axis of 
symmetry of the body, taken to be the x-axis in this analysis. Physically the 
problem is the same if we set v = 0 at  the boundary and v = Ieit at infinity. 
We shall assume the latter. 

3. The inner and outer expansions 

the form 
The inner expansions of the exact solutions of the equations (4) and ( 6 )  are of 

v = h(O)(x, y, Z ,  t )  + Mh(')(z, y, X ,  t )  + M2h@)(X, y, Z ,  t )  + . . . , 
p = p(O)fz, y, 2, t )  + Mp(l)(z, y, 2, t )  + M2p@(z, y, 2, t )  + . . . , 
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where both the series have complex components. When we insert these expan- 
sions into equations (4) and (6) we obtain 

(9) 

(10) 

O( I )  : 

O ( M )  : 

V .  h(O) = 0, - Vp(0) + V2h(0) = 0. 

V .  h(l) = 0, - VpU) + Vzh(1) = 0; 

O ( M 2 )  : V .  h@) = 0, - Vp(’)+ V2h@)- (h(O).Vh(O)+ ah(O)/at) = 0; (11) 

and so on. The equations (9) and (10) are identical with the steady Stokes-flow 
equations. 

For the outer expansions we set 

} (12) 
v = I eit + Mg(l)(2,  y”, 2, t )  + M2g(2) (2, y”, Z, t )  + . . ., 
p = - NiZ eit + M2fP) (2, y”, Z, t )  + M3jY2) (2, y”, Z, t )  + . . . , 

where the first term in the first of equations (12) corresponds to the free-stream 
velocity I eQ at infinity and the independent variables are now 

~ = M x ,  y”=My,  ~ “ = M z .  (13) 

By insertion of these equations in the equations (4) and (6) we obtain the 
equations for fil and g(l) as 

- v .  gcu = 0, - V p )  + 9’2g(1) - agcvpt = 0. (14) 

In this article we plan to obtain the solution to our problem correct to order M .  
As such it suffices to consider the equations (9), (10) and (14). Now assume that 
v = v0e”, p = p o  eit, and that the same relationship holds for the quantities 
h@), h(l), p@) ,  p(l) ,  g(l) and fP). When we make these substitutions and drop the zero 
subscript, the equations (9), (10) and the first of (14) are unchanged, while the 
second of equations (14) becomes 

- Qco + f72gc1) - igc1, = 0. (15) 

(16) 

The boundary conditions become 

v = I as r --f co, v = 0 a t  the body. 

There remains the problem of determining the proper boundary conditions for 
the individual terms of the inner and outer expansions. Since the inner expan- 
sions are not valid at infinity, the first boundary condition in (16) does not in 
general hold for the inner expansions. For a similar reason, the second boundary 
condition in (16) does not hold for the outer expansions. These boundary condi- 
tions are replaced by the matching conditions, which have the requirements that 
the inner and outer expansions should agree term by term in their common 
domain of validity. This shall happen for some intermediate orders of r,  namely 
r = O(lM-a) where 0 < a < 1. 

4. The first-order inner and outer solutions 
The first term in the outer expansion (12) for v is the free-stream velocity 

v = I. This term may be obtained by the following reasoning. Assume the solid 
is a sphere of radius a. Then the boundary of the solid is given in outer variables 
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by P = M and, in the limit M -+ 0,  the body shrinks to a point. A point cannot 
cause a finite disturbance in the fluid, hence the value of v will tend to the free- 
stream velocity I. 

For the inner solutions, the no-slip boundary conditions are valid. Thus 

ho = 0 at the body. (17) 

By the matching conditions, hc0) must agree for large values of r with the leading 
terms of the outer expansion, and hence 

h(O)+ I as r - f c o .  (18) 

The equations (9), ( 17) and (1 8) show that the solutions for h(O) andp(0) are simply 
the solutions of the steady Stokes flow problem. For a sphere, such solutions are 

The drag on the sphere of radius a in physical units is 6npU0 a. 
For large values of r ,  the asymptotic expansions of the steady Stokes flow 

solutions for axially symmetric bodies of any shape are given as (Payne & Pel1 
1960) 

where Do is the non-dimensional drag on the body in steady Stokes flow. Now 
if one defines ra = Mar, 0 < a < 1, then the relations (20 )  become 

Let us now find the first-order outer solutions. The outer solutions g(l) and 
are determined from the equations (14) and (15) with the boundary conditions 

g(1) -+ 0 as P -+ 00 and subject to the matching condition as stated above. To find 
the required solutions set 

g(l) = Do(Gl, G,, G3), jY1) = DoP. (22) 

The contribution for the drag comes only from Gl whichis given by the expression: 

where y2 = i, or y = (1  + i ) /d2.  The corresponding value of P is - q4nP3. 
When we rewrite (23) in the variables ra and expand in powers of M we get 
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The leading term in the outer expansion which is not matched by the inner 
expansion is now of order O(M). From (24)  it  follows that the second.order inner 
solution h(l), which satisfies the Stokes equations ( l o ) ,  should satisfy the boundary 
condition h(l) = 0, a t  the body and the condition h(I) = [Do(l + i ) / 6  J(2)77]1 as 
r -+ 00. Such a solution is easily seen to be 

( 1  + i )  Mh(0). (25)  h(1) = Do 
6 J W m  

To order M ,  the inner solution of the velocity field is then 

Body DO Df 

Hemispherical cup (3a+ 8)paUo 

Circular disk (broadside 

Circular disk (edge-on 
to the stream) 

to the stream) 

16,uaU 1+-M ( "3t ) 
?&uaU 1 +- M ( 82 ) 

Sphere 67rpa Uo 

Prolate spheriod 87rSpaU0 

Oblate spheroid s ~ P P a  UO 

Here S and p are constants related to the geometry of the spheroid (Payne & Pel1 1960). 
The value of Do for a hemispherical cup is taken from a recent paper (Collins 1963). 

TABLE 1 

Therefore the drag on the body is given by the formula (reverting to physical units 
and restoring the term ebl) 

gives the frictional force while the other part 

is &r out of phase with the velocity of the body and describes the virtual mass of 
the surrounding fluid associated with the motion. 

For a sphere, the formula (27) becomes (to order M )  

D = 6n;u~U 1 + - ( l + i )  . 1 :  I 
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This agrees with the known result (Lamb 1945, p. 644, equation (26), or Landau & 
Lifshitz 1959, p. 96, equation (3)). In fact the frictionul force Dfagrees completely 
because the known solution for Df does not contain terms of higher than order M .  
Note that U in the formula (30) is U,eiui. 

The energy dissipation arises only from the part Of of the drag. The part D, 
does not involve any dissipation of energy. 

Table 1 compares the values of Df with Do for bodies of various shapes. 

This research was sponsored by the National Science Foundation under 
contract no. G 24473 with the Pennsylvania State University. 
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